limx→π8cot 4x−cos 4x(π−8x)3
limx→π8cot 4x−cos 4x(π−8x)3
Let x=π8+y⇒y=x−π8
as x→π8,y→0
=limy→0cot 4(π8+y)−cos 4(π8+y)[π−8(π8+y)]3
=limy→0cot (π2+4y)−cos(π2+4y)(−8y)3
=limy→0−tan 4y+sin 4y−(8)3y3
=limy→0sin 4ycos 4y−sin 4y83y2
=limy→0sin 4y−sin 4y cos 4ycos 4y×y3×83
=limy→0sin 4y(1−cos 4y)cos 4y×y3×83
=limy→0sin 4y(2sin22y)cos 4y×y3×83
=283limy→0sin 4yy×sin22yy×1cos 4y
=283(limy→0sin 4y4y×4)×(limy→0sin22y2y)2×4×1limy→0 cos 4y
=283(1×4)×(1)×4×11
[∵limθ→0sinθθ=1,limθ→0cos θ=1]
=2×4×48×8×8=116