limx→x44√2−(cosx+sinx)51−sin2x is equal to
5√2
limx→x44√2−(cosx+sinx)51−sin2x
=limx→x4252−((cosx+sinx)2)522−(1+sin2x)
=limx→x4252−((cosx+sinx)2)522−(cosx+sinx)2
Lett=(cosx+sinx)2
x→π4
∴t=(cosπ4+sinπ4)2→(√2)2=2
=limt→2252−(t)522−(t)
=52(2)32[∵limx→axn−anx−a=nan−1]
=5√2