limx→∞√x2+a2−√x2+b2√x2+c2−√x2+d2
limx→∞√x2+a2−√x2+b2√x2+c2−√x2+d2
[∞∞form]
By Rationalising,
limx→∞(√x2+a2−√x2+b2)(√x2+c2−√x2+d2)×(√x2+a2+√x2+b2)(√x2+a2+√x2+b2)
limx→∞(x2+a2)−(x2−b2)(√x2+c2−√x2+d2)(√x2+a2+√x2+b2)
limx→∞(a2−b2)(√x2+c2−√x2+d2)(√x2+a2+√x2+b2)
limx→∞(a2−b2)(√x2+c2+√x2+d2)(√x2+c2−√x2+d2)(√x2+c2+√x2+d2)(√x2+a2+√x2+b2)
limx→∞(a2−b2)(√x2+c2+√x2+d2)(x2+c2−x2−d2)(√x2+a2+√x2+b2)=limx→∞(a2−b2)(√x2+c2+√x2+d2)(c2−d2)(√x2+a2+√x2+b2)
Divide the numerator and denominator by x
limx→∞(a2−b2)(c2−d2)⎡⎢ ⎢⎣√1+c2x2+√1+d2x2√1+1x2+√1+b2x2⎤⎥ ⎥⎦
As x→∞,1x,1x2→0
=(a2−b2c2−d2)(√1+√1√1+√1)=a2−b2c2−d2