limx→∞x√4x2+1−1
limx→∞x√4x2+1−1
limx→∞[x√4x2+1−1]
Rationalising the denominator:
limx→∞[x(√4x2+1−1)(√4x2+1+1)(√4x2+1+1)]
=limx→∞[x(√4x2+1+1)4x2+1−1]
=limx→∞[√4x2+1+14x]
Dividing the numerator and the denominator by x:
=limx→∞[√4x2+1x+1x4]
=limx→∞⎡⎢⎣√4x2+1x2+1x4⎤⎥⎦
=limx→∞⎡⎢⎣√4+1x2+1x4⎤⎥⎦
x→∞
∴1x,1x2→0=√44=24=12