limx→∞(13+132+133+....+13n)
limx→∞(13+132+133+....+13n) ...(i)
This is G.P. of common ration,r=13
∴ Sum of terms of G.P with a=13,r=13
Sn=a(1−rn1−r)
Sn=13(1−(13)n1−13)
=13(1−13n23)=13×23(1−13n)
Sn=12(1−13n)
Substituitng value of Sn in (i),we get
limn→∞Sn=limn→∞12(1−13n)
=limn→∞12(1−13n)
=12(1−0)
=12