limx→∞{x2+2x+32x2+x+5}3x−23x+2
Lety=limx→∞{x2+2x+32x2+x+5}3x−23x+2
TAking log on both sides
logy=3x−23x+2log(x2+2x+32x2+x+5)y=3x−2e3x+2log(x2+2x+32x2+x+5){x2+62x+32x2+x+5}3x−23x+2=e3x−23x+2log(x2+2x+32x2+x+5)
taking limit x→0=limx→∞{x2+2x+32x2+x+5}3x−23x+2=elimx→(3−2x)(3+2x)log⎛⎜⎝1+2x+3x22+2x+5x⎞⎟⎠=e(3−03+0)log12[∵asx→∞,1x→0]=elog12=12