We have,
limx→0cos(√1+x)−cos√x
⇒limx→02sin(√1+x+√x)2sin(√x−√1+x)2∴cosC−cosD=2sinC+D2sinD−C2
⇒limx→02sin(√1+x+√x)2sin(√x−√1+x)2×(√x+√1+x)(√x+√1+x)on rationlize
⇒limx→02sin(√1+x+√x)2sin(x−1−x)2(√x+√1+x)
Taking limit and we get,
⇒2sin(√1+0+√0)2sin−12(√0+√1+0)
⇒2sin12sin−12
⇒−2sin212
Hence, this is the answer