limx→π√2+cos x−1(π−x)2
limx→π√2+cos x−1(π−x)2
⇒x→π, then x−π→0 or let x−π=y⇒y→0
=limy→0√2+cos(π+y)−1(−y)2 = limy→0√2−cos y−1y2
=limy→0(√2−cos y−1)(√2−cos y+1)y2(√2−cos y+1)
=limy→0(2−cos y−1)(√2−cos y+1)y2=limy→0(1−cos y)(√2−cos y+1)y2
=limy→02sin2y2y2(√2−cos y+1)
=2limy→0(sin y2y2)2×14×1limy→0√2−cos y+1
=2×14×1√2−1+1
[∵lim0→0sin θθ=1]
=14