limx→√10√7+2x−(√5+√2)x2−10
limx→√10√7+2x−(√5+√2)x2−10
=limx→√10√7+2x−(√(√5+√2)2)x2−10
=limx→√10√7+2x−(√7+2√10)x2−10
Rationalising the numerator
=limx→√10√7+2x−(√7+2√10)x2−10×√7+2x+(√7+2√10)√7+2x+(√√7+2√10)
=limx→√107+2x−7−2√10(x2−10)(√7+2x+(√7+2√10))
=limx→√102(x−√10)(x2−10)(√7+2x+(√7+2√10))
=limx→√102(x+√10)(√7+2x+(√7+2√10))
=2(√10+√10)(√7+2√10+(√7+2√10))
=2(2√10)(2√7+2√10)
=1(2√10)(2√7+2√10)
=1(2√10)(√5+√2)
=(√5−√2)(6√10)