limx→√2(x2−2x2+√2x−4)=limx→√2(x2−2(x2−4)+√2x)×((x2−4)−√2x(x2−4)−√2x)=limx→√2((x2−2)[(x2−4)−√2x](x2−4)2−2x2)=limx→√2((x2−2)[(x2−4)−√2x]x4−8x2+16−2x2)=limx→√2((x2−2)[x2−4−√2x]x2(x2−8)−2(x2−8))=limx→√2((x2−2)[x2−4−√2x](x2−8)(x2−2))=(2−4−2−6)=(23)