limx→√2x2−2x2+√2x−4
limx→√2x2−2x2+√2x−4=limx→√2(x)2−(√2)2x2+√2x−4
It is of the form 00
=limx→√2(x−√2)(x+√2)x2+2√2x−√2x−4
=limx→√2(x−√2)(x+√2)x(x=2√2)−√2(x+2√2)
=limx→√2(x−√2)(x+√2)(x+2√2)(x−√2)
=√2+√2√2+2√2=2√23√2
=23
limx→2x2−x−2x2−2x+sin(x−2)
limx→∞{x2+2x+32x2+x+5}3x−23x+2