limx→√3x2−3x2+3√3x−12
=limx→√3(x−√3)(x+√3)x2+4√3x−√3x−12
=limx→√3(x−√3)(x+√3)x(x+4√3)−√3(x+4√3)
=limx→√3(x−√3)(x+√3)(x−√3)(x+4√3)
=√3+√3√3+4√3=2√35√3
=25
limx→3x2−4x+3x2−2x−3