limx→√3x4−9x2+4√3x−15
A:limx→√3x4−9x2+4√3x−15
limx→√3(x2)2−(3)2x2+5√3x−√3x−15
limx→√3(x2−3)(x2+3)x(x+5√3)−√3(x+5√3)
limx→√3(x−3)(x+3)(x2+3)(x−√3)(x+5√3)
=limx→√3(x−√3)(x+√3)(x2+3)(x−√3)(x+5√3)
=limx→√3(x+√3)(x2+3)(x+5√3)
=(√3+√3)(√3+5√3)=(2√3)(6)6√3=2