limx→√6√5+2x−(√3+√2)x2−6
limx→√6√5+2x−(√3+√2)x2−6
=limx→√6√5+2x−(√(√3+√2)2)x2−6
=limx→√6√5+2x−(√5+2√6)x2−6
Rationalising the numenator
=limx→√6√5+2x−(√5+2√6)x2−6×√5+2x+(√5+2√6)√5+2x+(√5+2√6)
=limx→√65+2x−5−2√6(x2−6)(√5+2x+(√5+2√6))
=limx→√62(x−√6)(x2−6)(√5+2x+(√5+2√6))
=limx→√62(x+6)(√5+2x+(√5+2√6))
=2(√6+√6)(√5+2√6+(√5+2√6))
=2(2√6)(2√5+2√6)
=1(2√6)(√5+2√6)
=1(2√6)(√3+√2)
=(√3−√2)(2√6)