limk→∞13+23+…….+k3k4=
0
2
13
∞
14
Explanation for the correct option:
Finding the value of the function on applying the limits:
Given,
limk→∞13+23+…….+k3k4=limk→∞k(k+1)22k4∵13+23+…….+n3=nn+122=limk→∞k2(k+1)24k4=14limk→∞(k+1)2k2=14limk→∞k+1k2
Ask→∞,1k→0
limk→∞13+23+…….+k3k4=14limk→∞1+1k2
Applying limits,
limk→∞13+23+…….+k3k4=14(1+0)2=14(1)2=14
Therefore, the correct answer is option (E).