limn→∞11-n2+21-n2+…….+n1-n2=
0
-12
12
none of these
Explanation for the correct option:
Finding the value of the given limit:
Given that,
limn→∞11-n2+21-n2+…….+n1-n2=limn→∞1+2+3+...+n1-n2=limn→∞∑n1-n2∵∑n=n(n+1)2=limn→∞n(n+1)2(1-n2)=limn→∞1+1n21n2-1
Applying the limits,
=1+1∞21∞-1=1+02(0-1)=-12
Therefore, the correct answer is option (B).