limθ→04θ(tanθ-2θtanθ)(1-cos2θ)=
12
1
2
Explanation for the correct option:
Finding the value of the given limit:
limθ→04θ(tanθ-2θtanθ)(1-cos2θ)MultiplyandDividebyθ2=limθ→04θ(tanθ-2θtanθ)2sin2θ×θ2θ2[∵2sin2θ=1-cos2θ]=2limθ→0θ(tanθ-2θtanθ)θ2×θ2sin2θ=2limθ→0(tanθ-2θtanθ)θ×θsinθ2
Applying the limits,
=2(1-2×0)×(1)2=2(1)(1)=2
Therefore, the correct answer is option (D).
pr.route sec^2theta+cosec^2theta=tantheta+cot theta