limx→0(1-ex)sinx(x2+x3)
-1
0
1
2
Explanation for the correct option:
Finding the value of the given function after applying the limits:
limx→0(1-ex)sinx(x2+x3)=limx→0(1-ex)sinx(x2+x3)=limx→0(1-ex)sinxx21+x[(x2+x3)andbewrittenasx21+x]=limx→01-exx×sinxx×11+x[Splittingtheterms]=limx→0-(ex-1)x×sinxx×11+x
Applying the limits,
=-1×1×11[limθ→0sin(θ)θ=1]=-1
Therefore, the correct answer is option (A).
Prove that the following functions do not have maxima or minima:
(i) f(x) = ex (ii) g(x) = logx
(iii) h(x) = x3 + x2 + x + 1