limx→01xsin-12x1+x2=
-2
0
2
∞
Explanation for the correct option:
Expanding the given equation and applying the limits:
limx→01xsin-12x1+x2=limx→01xsin-1sin2tan-1xd(tan-1x)dx=11+x2=limx→02tan-1xx
Applying the limits,
=2limx→0tan-1xx=1
Thus,limx→01xsin-12x1+x2=2
Therefore, the correct answer is option (C).
Evaluate :cos48°-sin42°