Evaluate: limx→0e5x-e4xx
1
2
4
5
Explanation for the correct answer:
Simplifying the equation to determinate form and applying the limits:
⇒limx→0e5x-e4xx⇒limx→0e5x-1-e4x+1x[Adding-1+1inthenumerator]⇒limx→0e5x-1x-e4x+1x⇒limx→05e5x-15x-4e4x+14x[Multiplyanddivide5infirsttermand4insecondterm]
Applying the limits
⇒5×1-4×1∵limx→0ex-1x=1⇒5-4⇒1
Thus, limx→0e5x-e4xx=1
Therefore, the correct answer is option (A).