Evaluate:limx→1logex1logx
e-1
e
2
0
Find the value of limx→1logex1logx
Consider the given Equation as: y=limx→1logex1logx
Then,
y=limx→1loge+logx1logxy=limx→11+logx1logx[∵loge=1]
Taking logon both sides,
logy=limx→1log1+logx1logx
We know that
logab=bloga, therefore
logy=limx→11logxlog1+logxPuttingx→1logy=log1+log1log1logy=log1+00[∵log1=0]logy=00Indeterminateform
Using the L' Hospital rule
limx→afxgx=limx→af'xg'x
logy=limx→111+logx.1x1xlogy=limx→111+logxlogy=11+log1logy=11+0logy=1y=e
Hence, the correct answer is Option B