limx→∞1+4x-1x+3=
e4
e2
e3
e
Explanation for the correct option:
Finding the value of limx→∞1+4x-1x+3:
The given value is,
I=limx→∞1+4x-1x+3
Rewriting the above equation as,
I=limx→∞1+4x-1x-144x+3x-1⇒I=elimx→∞4x+3x-1[∵1∞form]⇒I=e4limx→∞x1+3xx1-1x⇒I=e4limx→∞1+3x1-1x
At,
x→∞1x→1∞→0
Then,
I=e41+01-0⇒I=e4×1⇒I=e4
Hence, the correct answer is option (A).
Compare the given fraction and replace '□'by an appropriate sign '<or>'
47□49
The sum of the series 23!+45!+67!+... to ∞ = ae. Find (a+3)2.
Evaluate the expression when x=-45andy=13
2x+6y
Add
712+49