wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limitxπ21-tanx21-sinx1+tanx2π-2x3=


A

18

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

0

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

132

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

132


Explanation for Correct Answer:

Finding the value:

limitxπ21-tanx21-sinx1+tanx2π-2x3=

When we substitute limit it becomes the value 00 indeterminate

limitxπ21-tanx21-sinx1+tanx2π-2x3=limitxπ21-tanx21+(1).tanx21-sinxπ-2x3=limitxπ2tanπ4-tanx21+tanπ4tanx21-sinxπ-2x3tanπ4=1

We know that tanA-B=tanA-tanB1+tanAtanB

Therefore,

=limitxπ2tanπ4-x21-sinxπ-2x3=limitxπ2tanπ-2x41-sinxπ-2xπ-2x2

Multiplying and dividing by 4 in the denominator

=limitxπ2tanπ-2x41-sinx4π-2x4π-2x2=limitxπ214tanπ-2x4π-2x41-sinxπ-2x2=14limitxπ2tanπ-2x4π-2x4.limitxπ21-sinxπ-2x2=14I1.I2(i)

I1=limitxπ2tanπ-2x4π-2x4

Let's choose y=π-2x4

Limit xπ2, y0y=π-2π24=0

I1=limity0tanyy=1limity0tanyy=1

I2=limitxπ21-sinxπ-2x2

Using L hospitals rule

I2=limitxπ21-sinxπ-2x2=limitxπ20-cosx2π-2x.(-2)ddxsin(x)=cos(x);ddxxn=nxn-1=14limitxπ2cosxπ-2x

When we substitute limit it becomes the value 00 indeterminate, so again applying the L hospitals rule

=14limitxπ2cosxπ-2x=14limitxπ2-sinx-2ddxcos(x)=-sin(x)=14.12.sinπ2=18sinπ2=1

Substituting the value of I1 and I2 in equation (i)

limitxπ21-tanx21-sinx1+tanx2π-2x3=14I1.I=14.1.18=132

Therefore, limitxπ21-tanx21-sinx1+tanx2π-2x3=132

Hence, the correct answer is option (C).


flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon