limitx→π4∫2sec2xftdtx2-π216=
8πf2
2πf2
2πf12
4f(2)
Explanation for Correct Answer:
Finding the value:
limitx→π4∫2sec2xftdtx2-π216=∫2sec2π4ftdtπ42-π216=∫222ftdtπ216-π216∵secπ4=2=∫22ftdt0=00∵∫aaftdt=0
00Indeterminant form using L Hospitals Rule.
limitx→π4∫2sec2xftdtx2-π216(∵usingLeibnitzrule)
=limitx→π4f(sec2x).2secxsecxtanx2x[∵ddxsecx=secxtanxapplyingchainrule]=f(sec2π4).2secπ4secπ4tanπ42π4=f(22).2.2.2.12π4[∵sec(π4)=2;tan(π4)=1]=4f(2)π2=42πf(2)=8πf(2)
Hence, the correct answer is option (A).