wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limitxπ42sec2xftdtx2-π216=


A

8πf2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

2πf2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

2πf12

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

4f(2)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

8πf2


Explanation for Correct Answer:

Finding the value:

limitxπ42sec2xftdtx2-π216=2sec2π4ftdtπ42-π216=222ftdtπ216-π216secπ4=2=22ftdt0=00aaftdt=0

00Indeterminant form using L Hospitals Rule.

limitxπ42sec2xftdtx2-π216(usingLeibnitzrule)

=limitxπ4f(sec2x).2secxsecxtanx2x[ddxsecx=secxtanxapplyingchainrule]=f(sec2π4).2secπ4secπ4tanπ42π4=f(22).2.2.2.12π4[sec(π4)=2;tan(π4)=1]=4f(2)π2=42πf(2)=8πf(2)

Hence, the correct answer is option (A).


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon