Limit from x to 0 of 1-cos1-cos(x)x4=
Compute the required value:
Given: limx→01-cos1-cos(x)x4
That is
limx→01-cos1-cos(x)x4=limx→01+2sin21-cos(x)2-1x4[∵cos(2x)=1-2sin2(x)]=limx→02sin21+2sin2x2-12x4=limx→02sin22sin2x22x4=2×limx→0sin2sin2x2sin4x2×sin4x2x24×124=2×limx→0sinsin2x2sin2x22×sin4x2x24×124[aslimx→0sin(x)x=1]=2×124×1×1=123=18
Hence, the value of limx→0[1-cos1-cos(x)]x4 is 18.
if xnot=0 x+1/x=2 show
x2+1/x2=x3+1/x3=x4+1/x4