wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Limit X tends to 0

8/X^8(1-CosX^2/2-CosX^2/4+Cos X^2.CosX^2/4)

Open in App
Solution

Limitx---->08/x8[(1-cosx2/2)(1-cosx2/4)]=Limitx--->08[(1-cosx2/2)/x4][(1-cosx2/4)/x4]

=Limitx---->08[2(sinx2/4)2/x4][2(sinx2/8)2/x4]=Limitx---->032[(sinx2/4)/4(x2/4)]2[(sinx2/8)/8(x2/8)]2

=Limitx--->032/(4282) [(sinx2/4)/(x2/4)]2[(sinx2/8)/(x2/8)]2 =1/32*Limitx---->0[(sinx2/4)/(x2/4)]2[(sinx2/8)/(x2/8)]2

=1/32

Here i used following formulas:

1-cosx=2sin2(x/2)

Limity--->0siny/y = 1 [replace y by x2/4 and x2/8 to get a new result which is used in solving above problem...]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems for Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon