wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limitx23x+33-x-123-x2-31-x=


Open in App
Solution

Step 1: Substituting y

Let we choose y=3x2y2=32x2=3x

Limit x2, y3[y=322=3]

Step 3:Evaluating the given function:

Therefore,

limitx23x+333x-1213x2-33x=limity3y2+33y2-121y-3y2[y=3x2y2=32x2=3x]=limity31y2y4+27-12y21y2y-3[taking1y2commoninnumeratoranddenominator]=limity3y4+27-12y2y-3Factorize the numerator

=limity3y4-3y2-9y2+27y-3=limity3y2y2-3-9y2-3y-3=limity3y2-9y2-3y-3=limity3y2-3y-3y+3y-3=3+332-3=36

Hence,limitx2(3x+33-x-123-x2-31-x)=36


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon