limitx→23x+33-x-123-x2-31-x=
Step 1: Substituting y
Let we choose y=3x2⇒y2=32x2=3x
Limit x→2, ⇒y→3[∵y=322=3]
Step 3:Evaluating the given function:
Therefore,
limitx→23x+333x-1213x2-33x=limity→3y2+33y2-121y-3y2[∵y=3x2⇒y2=32x2=3x]=limity→31y2y4+27-12y21y2y-3[taking1y2commoninnumeratoranddenominator]=limity→3y4+27-12y2y-3Factorize the numerator
=limity→3y4-3y2-9y2+27y-3=limity→3y2y2-3-9y2-3y-3=limity→3y2-9y2-3y-3=limity→3y2-3y-3y+3y-3=3+332-3=36
Hence,limitx→2(3x+33-x-123-x2-31-x)=36