limx→0amx−bnxsin kx
limx→0amx−bnxx
Let f(x)=∣∣ ∣ ∣∣a(x)b(x)c(x)m(x)n(x)l(x)g(x)h(x)k(x)∣∣ ∣ ∣∣ then ∫a0f(x) is∣∣ ∣ ∣∣∫a0a(x)∫a0b(x)∫a0c(x)∫a0m(x)∫a0n(x)∫a0l(x)∫a0g(x)∫a0h(x)∫a0k(x)∣∣ ∣ ∣∣
If both limx→af(x) and limx→ag(x) and exist finitely and limx→ag(x)=0, then limx→af(x)g(x)=limx→af(x)limx→ag(x)