limx→a [f(x)+g(x)]=10 and limx→a f(x)=2. Then, limx→ag(x), if it exists, is
If the limits limx→af(x) and limx→ag(x) exist, then limx→a[f(x)+g(x)]=limx→af(x)+limx→ag(x)
⇒ 10 = 2+ limx→ag(x)
⇒ limx→ag(x)=8
If limx→a[f(x)+g(x)]=10 and limx→af(x)=2, then find the value of limx→ag(x), provided that limx→af(x) and limx→ag(x) exists ___
If both limx→af(x) and limx→ag(x) and exist finitely and limx→ag(x)=0, then limx→af(x)g(x)=limx→af(x)limx→ag(x)
limx→a[f(x)+g(x)]=limx→af(x)+limx→ag(x) is valid if limx→af(x) does not exists?
If limx→a[f(x) + g(x)] = 10 and limx→a f(x)=2, then find the value of limx→a g(x), provided the limit