Line xa+yb=1 cuts the coordinate axes at A (a, 0) and B(0, b) and the line xa′+yb′=−1 at A' (-a', 0) and B' (0, -b'). If the point A, B, A', B' are concyclic then the orthocenter of the triangle ABA' is
(0, b')
(0,aa′b)
A, B, A', B' lies on circle.
OA×OA′=OB×OB′ a×(−a′)=(b)(−b′) [Power of a circle]
aa' = bb' ;
Equation of altitude through A' is y - 0 = (ab) (x + a');
If intersects the altitude x = 0 at y=aa′b ;
Orthocenter are (0,aa′b)&(0,b′)