(A) e√x+e−√x=y
⇒dydx=12√xe√x−12√xe−√x
⇒2√xdydx=e√x−e−√x
⇒2(√xd2ydx2+12√xdydx)=12√x.y
⇒4xd2ydx2+2dydx−y=0
(B) 4x2+9y2=36⇒8x+18ydydx=0
⇒dydx+4x9y=0
(C) y2=x2−cx⇒2ydydx=2x−c
∴ substituting the value of c in the given equation
y2−(2x−2ydydx)x=x2
i.e., 2xydydx=3x2−y2
(D) y=Acos2x+Bsin2x
∴dydx−2Asin2x+2Bcos2x
⇒d2ydx2=−4Acos2x−4Bsin2x=−4y
⇒d2ydx2+4y=0