List-I | List-II |
A) Vertex of the parabola y2−x+4y+5=0 | p) (1,4) |
B) Focus of the parabola x2−2x−12y+13=0 | q). (1,-2) |
C) The directrix of the parabola x2+4x+2y−8=0 | r) 2y-13=0 |
D) Normal at (1,1) to y2=x | s) 2x+y-3=0 |
(x−1)2=12(y−1)
Vertex = (1,1)
a=3
focus = (1,1+3)
=(1,4)
c)(x+2)2=−2(y−6)
Vertex = (−2,6)
a=−12
(y−6)=−a
⇒y−6=12
y=6+12
⇒2y=13
d)dydx=12y=12⇒ slope of normal=−2
(y−1)=−2(x−1)
2x+y=3