ΔLMN∼ΔPQR, 9Ar(ΔPQR)=16Ar(ΔLMN). If QR=20 then Find MN.
Given:
ΔLMN∼ΔPQR
9Ar(ΔPQR)=16Ar(ΔLMN)
Ar(ΔPQR)Ar(ΔLMN)=169 ---(1)
QR=20---(given)
If two triangles are similar then, the ratio of the areas of two triangles is equal to squares the ratio of their corresponding sides.
Since, ΔPQR∼ΔLMN
⇒Ar(ΔPQR)Ar(ΔLMN)=QR2MN2
⇒169=202MN2
⇒MN2×16=202×9
⇒MN2×16=400×9
⇒MN2=400×916
⇒MN2=25×9
⇒MN=5×3
∴MN=15.