Locus of centroid of the triangle whose vertices are (a cos t, sin t), (b sin t, -b cost t) and (1,0) where t is a parameter is
Triangle vertices are
A(x1,y1)=(acost,asint)
B(x2,y2)=(bsint,−bcost)
C(x3,y3)=(1,0)
Let the centroid
point is (x,y).
We know that,
(x,y)=(x1+x2+x33,y1+y2+y33)
(x,y)=(acost+bsint+13,asint−bcost+03)
3x=acost+bsint+1,3y=asint−bcost
3x−1=acost+bsint,3y=asint−bcost
On squaring and
adding both side we get,
(3x−1)2+(3y)2=(acost+bsint)2+(asint−bcost)2
⇒(3x−1)2+9y2=a2cos2t+b2sin2t+2absintcost+a2sin2t+b2cos2t−2absintcost
⇒(3x−1)2+9y2=a2cos2t+b2sin2t+a2sin2t+b2cos2t
⇒(3x−1)2+9y2=a2cos2t+a2sin2t+b2sin2t+b2cos2t
⇒(3x−1)2+9y2=a2(cos2t+sin2t)+b2(sin2t+cos2t)
⇒(3x−1)2+(3y)2=a2+b2
Hence, this is the answer.