Locus of point z so that z, i, and iz are collinear, is
A straight line
A circle
An ellipse
A rectangular hyperbola
∣∣ ∣∣z¯z1i−i1iz−i¯z1∣∣ ∣∣=0⇒∣∣ ∣∣z−i¯z+i1001iz−i−i¯z+i1∣∣ ∣∣=0 ⇒(z−i)(¯z−1)+(z−1)(¯z+i)=0⇒2z¯z−(1−i)z−(1+i)¯z=0 Upon substituting z=x+iy we get that z lies on a circle
Locus of point z so that z,i, and iz are collinear, is