The correct option is
B x2+y2−5x+9/2=0Let the mid point be (h,k)
T=S1 for the equation of chord , the chord is hx+ky=h2k2
If the chord intersects the circle at(x1y1),(x2,y2),then by condition of perpendicularity
m1m2=−1⇒(y1−βx1−α)(y2−βx2−α)=−1
here the given circle is of the form x2+y2=a2.The tangents intersect at some point say (α,β)
(x1x2+y1y2)+(α2+β2)=α(x1+x2)+β(y1+y2)λx2−2λhx+λ2−a2k2=0λy2−2λky+λ2−a2h2=0[∵λ=λ2+k2]⇒x2+y2−αx−βy+12(α2+β2−a2)=0
where (α,β) ,(5,0) and x2+y2=16 where a=4
∴x2+y2−5x+12[25−16]=0⇒x2+y2−5x+92=0