Let the equation of hyperbola be x2a2−y2b2=1 ......(i)
Vertex of the parabola is (a,0)
Shifting the origin to (a,0), then equation of hyperbola becomes
(x+a)2a2−y2b2=1⇒x2a2−y2b2=−2xa⇒b2x2−a2y2=−2ab2x ......(ii)
Let the pole of hyperbola be (h,k)
Equation of polar w.r.t to (i) b2hx−a2ky=a2b2
Shifting the origin to (a,0)
⇒b2h(x+a)−a2ky=a2b2⇒b2hx−a2ky=a2b2−ab2h⇒b2hx−a2kya2b2−ab2h=1 .........(iii)
Making the equation of hyperbola in (ii) homogeneous using equation of polar in (iii), we get
b2x2−a2y2=−2ab2x{b2hx−a2kya2b2−ab2h}b2x2−a2y2+2x{b2hx−a2kya−h}=0
Now the chord subtend right angle at the origin i.e. at (a,0).
Therefore, coefficient of x2 + coefficient of y2=0
b2−a2+2b2ha−h=0−h(b2−a2)+a(b2−a2)+2b2h=0⇒h=a(a2−b2)a2+b2
Generalizing the equation, we get
⇒x=a(a2−b2)a2+b2
So, option D is correct.