1. (a) 2Ix=22x+1
Ix=22x+12
on solving,
Ix=22x+1−1
Ix=4x
therefore, on compairing R.H.S with L.H.S
I=4
(b). 2Ix=5x
on taking log on both side,
log2+xlogI=xlog5
log2=x(log5−logI)
0.30103=x(log10−log2−logI)
0.30103x=1−0.30103−logI
logI=0.6987−0.30130x
Therefore,
I=100.6987−0.3087x
(2). 31+x=7x2
taking log on both sides,
(1+x)log3=x2log7
on putting values,
(1+x)0.4771213=x20.84509880
(1+x)0.4771213=(x)0.4225494
1+xx=0.8856225869
1x=−0.114377413
therefore,
x=−8.74298494