wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

log 2=0.30103, log 3=0.4771213log 7=0.8450980 then solve :
(i) 2Ix=22x+1 and 2Ix=5x
(ii) 31+x=7x2

Open in App
Solution

1. (a) 2Ix=22x+1
Ix=22x+12
on solving,
Ix=22x+11
Ix=4x
therefore, on compairing R.H.S with L.H.S
I=4
(b). 2Ix=5x
on taking log on both side,
log2+xlogI=xlog5
log2=x(log5logI)
0.30103=x(log10log2logI)
0.30103x=10.30103logI
logI=0.69870.30130x

Therefore,
I=100.69870.3087x
(2). 31+x=7x2
taking log on both sides,
(1+x)log3=x2log7
on putting values,
(1+x)0.4771213=x20.84509880
(1+x)0.4771213=(x)0.4225494
1+xx=0.8856225869
1x=0.114377413
therefore,
x=8.74298494

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon