loge(1+3x)(1-2x) is equal to
-5x–5x22–35x33–…
-5x+5x22–35x33+…
5x–5x22+35x33–…
5x+5x22+35x33+…
Explanation for the correct option:
Finding loge(1+3x)(1-2x)is equal to :
Given : loge(1+3x)(1-2x)
loge(1+3x)(1-2x)=log(1+3x)–loge(1-2x)[∵logab=loga–logb]ln(1+x)=x-(x22)+(x33)-.............+(-1)n-1(xnn)+...........ln(1-x)=-x-(x22)-(x33)-............-(xnn)-...........log(1+3x)–loge(1-2x)=3x-(3x)22+(3x)33-…..--2x–(2x)22–(2x)33-…=3x-(3x)22+(3x)33-…..+2x+(2x)22+(2x)33+…=5x–5x22+35x33-…
Hence the correct answer is option (C)