wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

logx a +logaxa + 3loga2x a = 0

Open in App
Solution

logxa+(logaxa)+3loga2xa=0
logxalogaxa+3loga2xa=0
1logax1logaax+3logaa2x=0
1logax1logaa+logax+3logaa2+logax=0
1logax11+logax+32+logax=0
Let y=logax
1y11+y+32+y=0
(1+y)(2+y)y(2+y)+3y(1+y)y(1+y)(2+y)=0
(1+y)(2+y)y(2+y)+3y(1+y)=0
(2+y+2y+y2)(2y+y2)+(3y+3y2)=0
2+3y+y22yy2+3y+3y2=0
3y2+4y+2=0
Now by quadratic formula, we have
y=4±16246
y=2±22i3
Therefore,
logax=2±22i3
x=a2±22i3
Hence x=a2±22i3.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Laws of Logarithm with Use
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon