wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

log3x+7(9+12x+4x2) +log2x+3 (6x2+23x+21) =4

Open in App
Solution

log3x+7(4x2+12x+9)+log2x+3(6x2+23x+12)=4
Consider 4x2+12x+9=(2x)2+2×2x×3+32=(2x+3)2
And 6x2+23x+21=0
6x2+9x+14x+21=0
3x(2x+3)+7(2x+3)=0
(3x+7)(2x+3)=0
log3x+7(2x+3)2+log2x+3(3x+7)(2x+3)=4
2log(3x+7)(2x+3)+log(2x+3)(3x+7)+log(2x+3)(2x+3)=4 since logaa=1
2log(3x+7)(2x+3)+log(2x+3)(3x+7)+1=4
2log(3x+7)(2x+3)+log(2x+3)(3x+7)=3
Let α=log(3x+7)(2x+3) then log(2x+3)(3x+7)=1α
2α+1α=3
2α23α+1=0 is quadratic in α
2α22αα+1=0
2α(α1)1(α1)=0
(α1)(2α1)=0
α=1,α=12
log(3x+7)(2x+3)=1,12 where α=log(3x+7)(2x+3)
2x+3=3x+7,2x+3=(3x+7)12
2x3x=73,(2x+3)2=3x+7
x=4,4x2+9+12x3x7=0
x=4,4x2+9x+2=0
x=4,4x2+8x+x+2=0
x=4,4x(x+2)+(x+2)=0
x=4.(4x+1)=0,(x+2)=0
x=4,x=14,2
For x=2,4 the base will become negative.
x=14

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Logarithms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon