The correct option is D 1
=Ltx→0√1+x−√1+x2√1−x2−√1−x
=Ltx→0√1+x−√1+x2√1−x2−√1−x√1+x+√1+x2√1+x+√1+x2√1−x2+√1−x√1−x2+√1−x
=Ltx→0x−x2x−x2√1−x2+√1−x√1+x+√1+x2
=22=1
Alternative Method:
Ltx→0√1+x−√1+x2√1−x2−√1−x
It is of the form 00, so applying L-Hospital's rule,
=limx→012√1+x−2x2√1+x2−2x2√1−x2−−12√1−x
=1