Mark the correct alternative in each of the following :
In any ΔABC, a(b cos C−c cos B)=
b2−c2
⇒ a(b cos C−c cos B)=ab cos C−ac cos BPutting the values of cos B and cos C, we get=ab [a2+b2−c22ab]−ac[c2+a2−b22ac]=a2+b2−c22−c2+a2−b22=12 [a2+b2−c2−c2−a2+b2]=12 [2b2−2c2]=b2−c2