The correct option is B √32
sin275∘−sin215∘
=sin275∘−cos215∘
Now, sin275∘=sin(45∘+30∘)
=sin45∘cos30∘+cos45∘sin30∘
=1√2×√32+1√2×12
=√3+12√2
cos75∘=cos(45∘+30∘)
=cos45∘cos30∘−sin45∘sin30∘
=1√2×√32−1√2×12
=√3−12√2
Hence, sin275∘−cos275∘
=(√3+12√2)2−(√3−12√2)2
=3+1+2√3−3−1+2√38
=4√38
=√32