Mark the correct option choosing the correct coordinates.
A. X-coordiate In a right angled triangle ABC, right angled at B, the ratio of AB to AC is
1:√2, then 4tan A1+tan2 A
y-coordinate In a right angled triangle ABC, right angled at B, ∠ACB=θ, AB=2 cm and BC=1 cm, then 2(sin2θ+cos2θ).
B. x-coordinate IfsinB=12, then value of 3cosB−4cos3B.
y-coordinate the value of tan2θ+1tan2θ′
if tanθ+1tanθ=√2
C. x-coordinate The value of
(−1tan A−sin A1+cos A), if cosecA=1,
y-coordinate If cosθ=35, then -(cotθ+cosecθ)
C is the reflection of A in B.
(A) x- coordinate
Give B=1,H=√2
∴ p=√H2−B2
(by pythagoras theorem)
=√2−1=1⇒tanA=PB=11∴4tan A1+tan2A=1×11+1=2
y-coordinate
Now Ac=√AB2+BC2=√4+1=√5∴sinθ=2√5 and cosθ=1√5
Now,
sin2θ+cos2θ=225+12(√5)2=45+15=55=1∴2(sin2θ+cos2θ)=2
⇒ A(2,2)
(B) x-coordinate
Given,
sin B=12⇒cos B=√32∴3 cosB=4cos2B=3×√32−4(√32)3=3√32−43√38=3√32−3√32=0
y-coordinate
Given tan2θ+1tan2θ
Now, (tanθ+1tanθ)=tan2θ+1tan2θ+2tanθ×1tanθ⇒(√2)2=tan2θ+1tan2θ+2⇒tan2θ+1tan2θ=0∴ B(0,0)
(C) x-coordinate
Given cosecA=2
⇒sin A=12⇒cos A=√32 and tan A=1√3∴−(1tan A+sin A1+cos A)=−(√3+121+√32)
=−(√3+12+√3)=−(2√3+3+1)2+√3=−(2√3+4)2+√3=−2(2+√3)2+√3=−2
y-coordinate
Given cosθ=35∴ sinθ=45⇒cotθ=34 and cosecθ=54
∴−(cotθ+cosecθ)=−(34+54)
=−(84)=−2∴ C(−2,−2)
Hence, C is the reflection of A in B (origin)