Mass particles of 1 kg each are placed along x− axis at x=1,2,4,8,.....∞. Then gravitational force on a mass of 3 kg placed at origin is (G= universal gravitational constant)
Fg=(GMm1r21+GMm2r22+....∞)
Since m1=m2=.........∞=m=1 kg
Fg=GMm(1r21+1r22+....∞)
Fg=G(1)(3)(112+122+142+....∞)
Fg=3G(1+14+116+....∞)
Fg=3G⎛⎜
⎜
⎜⎝11−14⎞⎟
⎟
⎟⎠=4G