List I | List II |
A) (−2,1) lies | 1) on the circle |
B) (2,−1) lies | 2) outside the circle |
C) (0,1) lies | 3) on the tangent at (1,0) to S |
D) (2,3) lies | 4) inside the circle S |
S≡x2+y2+x−y−2=0
Center of the circle C1≡(−12,12)
For any point to lie inside/outside or on the circle, it should follow these conditions:
If Sp>0, then point P lies outside the circle S
If Sp<0, then point P lies inside the circle S,
If Sp=0, then point P lies on the circle S.
Tangent to the circle S at point (x1,y1) is
T:xx1+yy1+x+x12−y+y12−2=0
Tangent at point (1,0) is
T:x+x+12−y2−2=0
⇒T:3x−y−3=0
Now,
A) Point P(−2,1)
Sp=(−2)2+(1)2−2−1−2=0
Tp=3(−2)−1−3=−10<0
So, point P(−2,1) lies on the circle and does not lie on tangent at (1,0) to S. →(1)
B) Point (2,−1)
Sp=(2)2+(−1)2+2+1−2=6>0
Tp=3(2)+1−3=4>0
So, point P(2,−1) lies outside the circleand does not lie on tangent at (1,0) to S. →(2)
C) Point (0,1)
Sp=(0)2+(1)2+0−1−2=−2<0
Tp=3(0)−1−3=−4<0
So, point P(0,1) lies inside the circleand does not lie on tangent at (1,0) to S. →(4)
D) Point P(2,3)
Sp=22+32+2−3−2=10>0
Tp=3(2)−3−3=0
So, point P(2,3) lies outside the circleand also lies on tangent at (1,0) to S. →(3)
∴ Correct matching order is A(1) B(2) C(4) D(3)
Hence, the best matching option is D.