1. Period of cos√x
cos√x is not a periodic function because
domain of cos√x is x≥0
But for periodic function domain of xϵ[−∞,∞]
2. Period of sin3x+cos3x
sin3x+cos3x=3sinx−sin3x+cos3x+3cosx4
=3(cosx+sinx)+cos3x−sin3x4
=3√2cos(x−π4)+√2cos(3x+π4)4
Period of sin3x+cos3x=LCMof(2π,2π3)
=2π [concept -1]
3. Period of |sinx|+|cosx|
property of periodic function f(x+T)=f(x)
∴ Put T=π2
|sin(x+π2)|+|cos(x+π2)|=|cosx|+|sinx|
|cosx|+|sinx|=|cosx|+|sinx|
i.e., π2 is a period of |sinx|+|cosx|
4. sinxcosx=sin2x2
Period of sinxcosx=2π2=π