wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Match of the following :
List - I List - II
1. Max. value of 3sinx+4cosx a.24
2. Min. positive value of sinx+cosecx b.5
3. Min. value of 9sin2x+16cosec2x c.2
4. Max. value of sin4x+cos4x d.1

A
1b,2c,3a,4d
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1d,2a,3b,4c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1c,2d,3a,4b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1c,2b,3d,4a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 1b,2c,3a,4d

1. f(x)=3sinx+4cosx
we know, max value of asinx±bcosx is +a2+b2
max. value of 3sinx+4cosx is 5
2. sinx+cosecx=sinx+1sinx
put sinx=4f(y)=y+1y
f(y)=11y2=0
y=1
at sinx=1,f(x)=1+11=2.
at sinx=1,f(x)=2
at sinx=0,f(x)=
min. positive value of sinx+cosecx=2.
3. f(x)=9sin2x+16sin2x
put y=sinx,yϵ[1,1]
f(y)=9y2+16y2
f(y)=18y32y2=0
y2=43
9×43+16×34
f(x)=24

f(n)ϵ(24,)
4. f(x)=sin4x+cos4x=1(sin2x)22
f(x)ϵ[12,1]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon