Match of the following :
List - I List - II
1. Max. value of 3sinx+4cosx a.24
2. Min. positive value of sinx+cosecx b.5
3. Min. value of 9sin2x+16cosec2x c.2
4. Max. value of sin4x+cos4x d.1
1. f(x)=3sinx+4cosx
we know, max value of asinx±bcosx is +√a2+b2
∴ max. value of 3sinx+4cosx is 5
2. sinx+cosecx=sinx+1sinx
put sinx=4⇒f(y)=y+1y
f′(y)=1−1y2=0
y=1
at sinx=1,f(x)=1+11=2.
at sinx=−1,f(x)=−2
at sinx=0,f(x)=∞
min. positive value of sinx+cosecx=2.
3. f(x)=9sin2x+16sin2x
put y=sinx,yϵ[−1,1]
f(y)=9y2+16y2
f′(y)=18y−32y2=0
⇒y2=43
∴9×43+16×34
f(x)=24
f(n)ϵ(24,∞)
4. f(x)=sin4x+cos4x=1−(sin2x)22
f(x)ϵ[12,1]