We know that sum to n terms of an AP is given by
Sn=n2(a+l), where a and l are the first and the last terms respectively, and n is the number of terms in the AP.
In the AP 2+4+...+200,
a=2,d=2 and l=200.
The nth term of the AP is given by
an=a+(n−1)d.
∴200=2+(n−1)2
198=(n−1)2
⟹99=(n−1)
⟹n=100
∴Sn=1002(2+200)
Sn=10100
Similarly, in the AP 3 + 11 + ...+803,
a=3,d=8 and l=803.
Using an=a+(n−1)d to calculate n, we have
803=3+(n−1)8
800=(n−1)8
⟹n=101
⟹Sn=1012(3+803)
∴Sn=40703
Lastly, in the AP 1 + 3 +...+199, we have
a=1,d=2 and l=199.
Using an=a+(n−1)d,
199=1+(n−1)2.
198=(n−1)2
99=(n−1)⟹n=100
⟹Sn=1002(1+199)
∴Sn=10000